Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37662199

ABSTRACT

The cognitive processes supporting complex animal behavior are closely associated with ubiquitous movements responsible for our posture, facial expressions, ability to actively sample our sensory environments, and other critical processes. These movements are strongly related to neural activity across much of the brain and are often highly correlated with ongoing cognitive processes, making it challenging to dissociate the neural dynamics that support cognitive processes from those supporting related movements. In such cases, a critical issue is whether cognitive processes are separable from related movements, or if they are driven by common neural mechanisms. Here, we demonstrate how the separability of cognitive and motor processes can be assessed, and, when separable, how the neural dynamics associated with each component can be isolated. We establish a novel two-context behavioral task in mice that involves multiple cognitive processes and show that commonly observed dynamics taken to support cognitive processes are strongly contaminated by movements. When cognitive and motor components are isolated using a novel approach for subspace decomposition, we find that they exhibit distinct dynamical trajectories. Further, properly accounting for movement revealed that largely separate populations of cells encode cognitive and motor variables, in contrast to the 'mixed selectivity' often reported. Accurately isolating the dynamics associated with particular cognitive and motor processes will be essential for developing conceptual and computational models of neural circuit function and evaluating the function of the cell types of which neural circuits are composed.

2.
Curr Opin Neurobiol ; 83: 102784, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757586

ABSTRACT

Orofacial motor actions are movements that, in rodents, involve whisking of the vibrissa, deflection of the nose, licking and lapping with the tongue, and consumption through chewing. These actions, along with bobbing and turning of the head, coordinate to subserve exploration while not conflicting with life-supporting actions such as breathing and swallowing. Orofacial and head movements are comprised of two additive components: a rhythm that can be entrained by the breathing oscillator and a broadband component that directs the actuator to the region of interest. We focus on coordinating the rhythmic component of actions into a behavior. We hypothesize that the precise timing of each constituent action is continually adjusted through the merging of low-level oscillator input with sensory-derived, high-level rhythmic feedback. Supporting evidence is discussed.


Subject(s)
Movement , Nose , Animals , Rodentia , Respiration , Vibrissae
3.
Nat Neurosci ; 26(9): 1642-1650, 2023 09.
Article in English | MEDLINE | ID: mdl-37604887

ABSTRACT

Genetically encoded voltage indicators (GEVIs) hold immense potential for monitoring neuronal population activity. To date, best-in-class GEVIs rely on one-photon excitation. However, GEVI imaging of dense neuronal populations remains difficult because out-of-focus background fluorescence produces low contrast and excess noise when paired with conventional one-photon widefield imaging methods. To address this challenge, we developed an imaging system capable of efficient, high-contrast GEVI imaging at near-kHz rates and demonstrate it for in vivo and ex vivo imaging applications in the mouse neocortex. Our approach uses simultaneous multiplane imaging to monitor activity within contiguous tissue volumes with no penalty in speed or requirement for high excitation power. This approach, multi-Z imaging with confocal detection (MuZIC), permits high signal-to-noise ratio voltage imaging in densely labeled neuronal populations and is compatible with imaging through micro-optics. Moreover, it minimizes artifacts associated with concurrent imaging and optogenetic photostimulation for all-optical electrophysiology.


Subject(s)
Artifacts , Neocortex , Animals , Mice , Microscopy, Confocal , Optogenetics , Photons
4.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37502929

ABSTRACT

Voltage imaging with cellular specificity has been made possible by the tremendous advances in genetically encoded voltage indicators (GEVIs). However, the kilohertz rates required for voltage imaging lead to weak signals. Moreover, out-of-focus fluorescence and tissue scattering produce background that both undermines signal-to-noise ratio (SNR) and induces crosstalk between cells, making reliable in vivo imaging in densely labeled tissue highly challenging. We describe a microscope that combines the distinct advantages of targeted illumination and confocal gating, while also maximizing signal detection efficiency. The resulting benefits in SNR and crosstalk reduction are quantified experimentally and theoretically. Our microscope provides a versatile solution for enabling high-fidelity in vivo voltage imaging at large scales and penetration depths, which we demonstrate across a wide range of imaging conditions and different GEVI classes.

5.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37015225

ABSTRACT

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Subject(s)
Angiotensin-Converting Enzyme 2 , Rhodopsin , Mice , Animals , Action Potentials/physiology , Rhodopsin/genetics , Neurons/physiology , Mutation/genetics
6.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187738

ABSTRACT

Recent advances in extracellular electrophysiology now facilitate the recording of spikes from hundreds or thousands of neurons simultaneously. This has necessitated both the development of new computational methods for spike sorting and better methods to determine spike sorting accuracy. One longstanding method of assessing the false discovery rate (FDR) of spike sorting - the rate at which spikes are misassigned to the wrong cluster - has been the rate of inter-spike-interval (ISI) violations. Despite their near ubiquitous usage in spike sorting, our understanding of how exactly ISI violations relate to FDR, as well as best practices for using ISI violations as a quality metric, remain limited. Here, we describe an analytical solution that can be used to predict FDR from ISI violation rate. We test this model in silico through Monte Carlo simulation, and apply it to publicly available spike-sorted electrophysiology datasets. We find that the relationship between ISI violation rate and FDR is highly nonlinear, with additional dependencies on firing rate, the correlation in activity between neurons, and contaminant neuron count. Predicted median FDRs in public datasets were found to range from 3.1% to 50.0%. We find that stochasticity in the occurrence of ISI violations as well as uncertainty in cluster-specific parameters make it difficult to predict FDR for single clusters with high confidence, but that FDR can be estimated accurately across a population of clusters. Our findings will help the growing community of researchers using extracellular electrophysiology assess spike sorting accuracy in a principled manner.

7.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34697075

ABSTRACT

Recently developed probes for extracellular electrophysiological recordings have large numbers of electrodes on long linear shanks. Linear electrode arrays, such as Neuropixels probes, have hundreds of recording electrodes distributed over linear shanks that span several millimeters. Because of the length of the probes, linear probe recordings in rodents usually cover multiple brain areas. Typical studies collate recordings across several recording sessions and animals. Neurons recorded in different sessions and animals thus have to be aligned to each other and to a standardized brain coordinate system. Here, we evaluate two typical workflows for localization of individual electrodes in standardized coordinates. These workflows rely on imaging brains with fluorescent probe tracks and warping 3D image stacks to standardized brain atlases. One workflow is based on tissue clearing and selective plane illumination microscopy (SPIM), whereas the other workflow is based on serial block-face two-photon (SBF2P) microscopy. In both cases electrophysiological features are then used to anchor particular electrodes along the reconstructed tracks to specific locations in the brain atlas and therefore to specific brain structures. We performed groundtruth experiments, in which motor cortex outputs are labeled with ChR2 and a fluorescence protein. Light-evoked electrical activity and fluorescence can be independently localized. Recordings from brain regions targeted by the motor cortex reveal better than 0.1-mm accuracy for electrode localization, independent of workflow used.


Subject(s)
Brain , Neurons , Animals , Brain/diagnostic imaging , Electrodes , Electrodes, Implanted , Electrophysiological Phenomena
9.
Nat Neurosci ; 24(6): 843-850, 2021 06.
Article in English | MEDLINE | ID: mdl-33875892

ABSTRACT

Decisions are held in memory until enacted, which makes them potentially vulnerable to distracting sensory input. Gating of information flow from sensory to motor areas could protect memory from interference during decision-making, but the underlying network mechanisms are not understood. Here, we trained mice to detect optogenetic stimulation of the somatosensory cortex, with a delay separating sensation and action. During the delay, distracting stimuli lost influence on behavior over time, even though distractor-evoked neural activity percolated through the cortex without attenuation. Instead, choice-encoding activity in the motor cortex became progressively less sensitive to the impact of distractors. Reverse engineering of neural networks trained to reproduce motor cortex activity revealed that the reduction in sensitivity to distractors was caused by a growing separation in the neural activity space between attractors that encode alternative decisions. Our results show that communication between brain regions can be gated via attractor dynamics, which control the degree of commitment to an action.


Subject(s)
Attention/physiology , Decision Making/physiology , Photic Stimulation/methods , Sensory Gating/physiology , Somatosensory Cortex/physiology , Action Potentials/physiology , Animals , Mice , Mice, Transgenic
10.
Neuron ; 106(3): 369-387, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32380050

ABSTRACT

Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.


Subject(s)
Brain/cytology , Imaging, Three-Dimensional/methods , Optical Imaging/methods , Staining and Labeling/methods , Animals , Brain/physiology , Humans , Microscopy/methods
11.
Cell ; 179(1): 268-281.e13, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31495573

ABSTRACT

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Neurites/physiology , Pyramidal Tracts/physiology , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods , Software , Transfection
12.
Neuroinformatics ; 17(4): 475-478, 2019 10.
Article in English | MEDLINE | ID: mdl-31377994

ABSTRACT

In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181-183, Gao et al. 2018, Nature, 563, 113-116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than the dentate nucleus, given previous anatomical studies in non-human primates. Second, De Schutter suggests that our study design did not delineate different components of the behavior and the fastigial nucleus might play roles in sensory discrimination rather than motor planning. These comments are based on anatomical studies in other species and homology-based arguments and ignore key anatomical data and neurophysiological experiments from our study. Here we outline our interpretation of existing data and point out gaps in knowledge where future studies are needed.


Subject(s)
Cerebellar Nuclei , Cerebellum , Animals , Mice , Primates
13.
J Comp Neurol ; 527(13): 2190-2199, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30859571

ABSTRACT

Reconstruction of the axonal projection patterns of single neurons has been an important tool for understanding both the diversity of cell types in the brain and the logic of information flow between brain regions. Innovative approaches now enable the complete reconstruction of axonal projection patterns of individual neurons with vastly increased throughput. Here, we review how advances in genetic, imaging, and computational techniques have been exploited for axonal reconstruction. We also discuss how new innovations could enable the integration of genetic and physiological information with axonal morphology for producing a census of cell types in the mammalian brain at scale.


Subject(s)
Axons/ultrastructure , Brain/cytology , Neural Pathways/anatomy & histology , Neuroimaging/methods , Animals , Humans , Imaging, Three-Dimensional
14.
Nature ; 563(7729): 72-78, 2018 11.
Article in English | MEDLINE | ID: mdl-30382198

ABSTRACT

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Subject(s)
Gene Expression Profiling , Neocortex/cytology , Neocortex/metabolism , Animals , Biomarkers/analysis , Female , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Male , Mice , Motor Cortex/anatomy & histology , Motor Cortex/cytology , Motor Cortex/metabolism , Neocortex/anatomy & histology , Organ Specificity , Sequence Analysis, RNA , Single-Cell Analysis , Visual Cortex/anatomy & histology , Visual Cortex/cytology , Visual Cortex/metabolism
15.
Nature ; 563(7729): 79-84, 2018 11.
Article in English | MEDLINE | ID: mdl-30382200

ABSTRACT

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.


Subject(s)
Efferent Pathways/cytology , Efferent Pathways/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Movement/physiology , Animals , Basal Ganglia/cytology , Brain Stem/cytology , Glutamic Acid/metabolism , Medulla Oblongata/cytology , Mice , Neurons/metabolism , Pyramidal Cells/classification , Pyramidal Cells/physiology , Single-Cell Analysis , Transcriptome
16.
Nature ; 563(7729): 113-116, 2018 11.
Article in English | MEDLINE | ID: mdl-30333626

ABSTRACT

Persistent and ramping neural activity in the frontal cortex anticipates specific movements1-6. Preparatory activity is distributed across several brain regions7,8, but it is unclear which brain areas are involved and how this activity is mediated by multi-regional interactions. The cerebellum is thought to be primarily involved in the short-timescale control of movement9-12; however, roles for this structure in cognitive processes have also been proposed13-16. In humans, cerebellar damage can cause defects in planning and working memory13. Here we show that persistent representation of information in the frontal cortex during motor planning is dependent on the cerebellum. Mice performed a sensory discrimination task in which they used short-term memory to plan a future directional movement. A transient perturbation in the medial deep cerebellar nucleus (fastigial nucleus) disrupted subsequent correct responses without hampering movement execution. Preparatory activity was observed in both the frontal cortex and the cerebellar nuclei, seconds before the onset of movement. The silencing of frontal cortex activity abolished preparatory activity in the cerebellar nuclei, and fastigial activity was necessary to maintain cortical preparatory activity. Fastigial output selectively targeted the behaviourally relevant part of the frontal cortex through the thalamus, thus closing a cortico-cerebellar loop. Our results support the view that persistent neural dynamics during motor planning is maintained by neural circuits that span multiple brain regions17, and that cerebellar computations extend beyond online motor control13-15,18.


Subject(s)
Cerebellum/physiology , Frontal Lobe/physiology , Psychomotor Performance/physiology , Animals , Cerebellum/cytology , Cues , Female , Frontal Lobe/cytology , Male , Mice , Movement/physiology , Neural Pathways , Neurons/physiology , Thalamus/cytology , Thalamus/physiology
17.
J Neurosci ; 38(9): 2189-2206, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29374137

ABSTRACT

In mammals, olfactory sensation depends on inhalation, which controls activation of sensory neurons and temporal patterning of central activity. Odor representations by mitral and tufted (MT) cells, the main output from the olfactory bulb (OB), reflect sensory input as well as excitation and inhibition from OB circuits, which may change as sniff frequency increases. To test the impact of sampling frequency on MT cell odor responses, we obtained whole-cell recordings from MT cells in anesthetized male and female mice while varying inhalation frequency via tracheotomy, allowing comparison of inhalation-linked responses across cells. We characterized frequency effects on MT cell responses during inhalation of air and odorants using inhalation pulses and also "playback" of sniffing recorded from awake mice. Inhalation-linked changes in membrane potential were well predicted across frequency from linear convolution of 1 Hz responses; and, as frequency increased, near-identical temporal responses could emerge from depolarizing, hyperpolarizing, or multiphasic MT responses. However, net excitation was not well predicted from 1 Hz responses and varied substantially across MT cells, with some cells increasing and others decreasing in spike rate. As a result, sustained odorant sampling at higher frequencies led to increasing decorrelation of the MT cell population response pattern over time. Bulk activation of sensory inputs by optogenetic stimulation affected MT cells more uniformly across frequency, suggesting that frequency-dependent decorrelation emerges from odor-specific patterns of activity in the OB network. These results suggest that sampling behavior alone can reformat early sensory representations, possibly to optimize sensory perception during repeated sampling.SIGNIFICANCE STATEMENT Olfactory sensation in mammals depends on inhalation, which increases in frequency during active sampling of olfactory stimuli. We asked how inhalation frequency can shape the neural coding of odor information by recording from projection neurons of the olfactory bulb while artificially varying odor sampling frequency in the anesthetized mouse. We found that sampling an odor at higher frequencies led to diverse changes in net responsiveness, as measured by action potential output, that were not predicted from low-frequency responses. These changes led to a reorganization of the pattern of neural activity evoked by a given odorant that occurred preferentially during sustained, high-frequency inhalation. These results point to a novel mechanism for modulating early sensory representations solely as a function of sampling behavior.


Subject(s)
Inhalation , Olfactory Bulb/physiology , Olfactory Perception/physiology , Smell/physiology , Action Potentials/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Odorants , Olfactory Pathways/physiology
18.
J Neurosci Res ; 96(9): 1467-1475, 2018 09.
Article in English | MEDLINE | ID: mdl-27862192

ABSTRACT

The neuronal circuits defined by the axonal projections of pyramidal neurons in the cerebral cortex are responsible for processing sensory and other information to plan and execute behavior. Subtypes of cortical pyramidal neurons are organized across layers, with those in different layers distinguished by their patterns of axonal projections and connectivity. For example, those in layers 2 and 3 project between cortical areas to integrate sensory and other information with motor areas; while those in layers 5 and 6 also integrate information between cortical areas, but also project to subcortical structures involved in the generation of behavior. Recent advances in neuroanatomical techniques allow one to target specific subtypes of cortical pyramidal neurons and label both their inputs and projections. Combining these methods with neurophysiological recording techniques and newly introduced atlases of the mouse brain provide the opportunity to achieve a detailed view of the organization of cerebral cortical circuits. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cerebral Cortex/cytology , Pyramidal Cells/cytology , Animals , Brain/cytology , Mice , Neural Pathways/cytology , Neuroanatomical Tract-Tracing Techniques/methods
19.
Neuron ; 91(2): 397-411, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27346531

ABSTRACT

Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles.


Subject(s)
Axons/metabolism , Nerve Net/physiology , Neural Inhibition/physiology , Neurons/physiology , Olfactory Bulb/physiology , Animals , Dendrites/metabolism , Mice, Transgenic , Odorants
20.
Elife ; 5: e10566, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26796534

ABSTRACT

The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.


Subject(s)
Brain/cytology , Image Processing, Computer-Assisted/methods , Neurons/cytology , Optical Imaging/methods , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...